行业动态

聚焦行业动态,洞悉行业发展

真空烧结的炉热区设计及气体管理系统运行要点
发布时间:2022-12-05   浏览:3656次

  真空烧结炉热区设计及气体管理系统运行要点

  真空烧结炉在升温平和均热处理温度达到600°C时,剩余聚合物粘结剂的除气进程产生。为了有用运送气体物质到热区外,需要在箱体内各个点都有一股连续同质的净化气流。气密炉胆(或马弗)的规划可以减小真空烧结炉的尺寸,实现外部加热。这种规划的主要优势在于,炉子供给了高纯气氛并保证热气流均匀地穿过零件。但是,在炉内安装一个冷却风扇并不是件容易的事情,这会导致较长的生产周期,炉胆也会产生更多的投资、维护和能源成本。

真空烧结炉

  其根底架构是一个圆形的碳钢结构(分配器),它为热区、加热元件和隔热层供给均匀的支撑。扁平条状的石墨加热元件彻底包围了热区的圆柱形部分,并且均匀排列以便为工作区供给能量传递。附加在前后端部的加热元件进一步提高温度均匀性至±3°C。保温层内部是多层高性能石墨毡,外表是CFC资料。工艺气体的输入独立可调且流量可控,这有助于在热区内部和分配器及炉壳的间隙中坚持一个压差。均匀的工艺气体在热区内外循环,以保证粘结剂均匀蒸腾,防止粘结剂再次沉积,也使热区免受污染。

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

07 August 2023
气相沉积炉的结构及工作原理

气相沉积炉的结构及工作原理

  气相沉积炉的结构及工作原理  气相沉积炉(Gas Phase Deposition Furnace)是一种用于材料薄膜生长的实验设备,常用于半导体、光电子、纳米科技等领域。下面是气相沉积炉的基本结构和工作原理的简要说明:  气相沉积炉结构:  气相沉积炉通常由以下几个主要组成部分构成:  1.反应室(Reaction Chamber):用于放置材料衬底(Substrate)以及执行反应的区域。反应室通常是一个密封的金属腔体,具有高温抗腐蚀性能。  2.加热系统(Heating System):用于提供反应室内的高温环境。加热系统通常采用电阻加热或感应加热的方式,通过加热元件(比如加热线圈)提供热源。  3.气体供应系统(Gas Supply System):用于控制和提供反应室内所需的气体混合物。气体供应系统通常包括多个气体进口、流量控制器和混合装置等。  4.排气系统(Exhaust System):用于排除反应室内产生的废气和杂质。排气系统通常包括真空泵和废气处理装置等。  5.控制系统(Control System):用于对炉子的温度、气体流量等参数进行实时监控和调节。  气相沉积炉工作原理:  气相沉积炉的工作原理是利用热分解或化学反应将气体源中的原料分子在高温环境下转化为可沉积的材料薄膜。具体步骤如下:  1.衬底放置:将待生长的衬底放置在反应室中的加热区域,通常通过夹持装置固定。  2.加热预处理:加热系统提供热源,将反应室内的温度升至所需的生长温度。此过程通常在惰性气氛下进行,以排除氧气和其他杂质。  3.气体供应和反应:气体供应系统控制并提供所需的气体混合物,其通过进入反应室与衬底表面发生化学反应或热分解,产生可沉积的物种。  4.材料沉积:沉积物种在衬底表面吸附并形成一层薄膜。其形貌、结构和性质可通过控制温度、气体流量和沉积时间等参数来调节。  5.冷却和取出:完成材料沉积后,可关闭气体供应和加热系统,让衬底缓慢冷却。待冷却至安全温度后,可以取出生长的薄膜。  需要注意的是,具体的气相沉积炉工作原理会因不同类型的沉积方法(如化学气相沉积、物理气相沉积等)和所研究的材料而有所不同。上述仅为一般的工作原理示意,实际操作中需根据具体情况进行参数调节和设备操作。