行业动态

聚焦行业动态,洞悉行业发展

气相沉积炉的结构及工作原理
发布时间:2023-08-07   浏览:2512次

  气相沉积炉的结构及工作原理

  气相沉积炉(Gas Phase Deposition Furnace)是一种用于材料薄膜生长的实验设备,常用于半导体、光电子、纳米科技等领域。下面是气相沉积炉的基本结构和工作原理的简要说明:

  气相沉积炉结构:

  气相沉积炉通常由以下几个主要组成部分构成:

  1.反应室(Reaction Chamber):用于放置材料衬底(Substrate)以及执行反应的区域。反应室通常是一个密封的金属腔体,具有高温抗腐蚀性能。

  2.加热系统(Heating System):用于提供反应室内的高温环境。加热系统通常采用电阻加热或感应加热的方式,通过加热元件(比如加热线圈)提供热源。

  3.气体供应系统(Gas Supply System):用于控制和提供反应室内所需的气体混合物。气体供应系统通常包括多个气体进口、流量控制器和混合装置等。

  4.排气系统(Exhaust System):用于排除反应室内产生的废气和杂质。排气系统通常包括真空泵和废气处理装置等。

  5.控制系统(Control System):用于对炉子的温度、气体流量等参数进行实时监控和调节。

  气相沉积炉工作原理:

  气相沉积炉的工作原理是利用热分解或化学反应将气体源中的原料分子在高温环境下转化为可沉积的材料薄膜。具体步骤如下:

  1.衬底放置:将待生长的衬底放置在反应室中的加热区域,通常通过夹持装置固定。

  2.加热预处理:加热系统提供热源,将反应室内的温度升至所需的生长温度。此过程通常在惰性气氛下进行,以排除氧气和其他杂质。

  3.气体供应和反应:气体供应系统控制并提供所需的气体混合物,其通过进入反应室与衬底表面发生化学反应或热分解,产生可沉积的物种。

  4.材料沉积:沉积物种在衬底表面吸附并形成一层薄膜。其形貌、结构和性质可通过控制温度、气体流量和沉积时间等参数来调节。

  5.冷却和取出:完成材料沉积后,可关闭气体供应和加热系统,让衬底缓慢冷却。待冷却至安全温度后,可以取出生长的薄膜。

  需要注意的是,具体的气相沉积炉工作原理会因不同类型的沉积方法(如化学气相沉积、物理气相沉积等)和所研究的材料而有所不同。上述仅为一般的工作原理示意,实际操作中需根据具体情况进行参数调节和设备操作。


免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

09 July 2018
真空熔炼炉向外传递的因素的三大要素

真空熔炼炉向外传递的因素的三大要素

   根据温度场分布方程可知,真空熔炼炉整个温度场的分布主要取决于几个方面的约束。即材料的平均导热系数入,材料的平均密度P和平均比热熔度。   影响真空熔炼炉温度向外传递的因素,包括以下3点:   在该设计中,主要采用内热源形式。真空熔炼炉内部热源发热,温度由里至外传递。其强度大小直接影响炉内温度分布情况。可以看出,当内热源吼越高时,一定点的温度越高,同时一定温差(△T)的分布区域(r)越大。所以,在实际生产过程中,可以通过控制炉芯的表面负荷亦即炉芯功率控制炉内温度分布。   反应料距炉芯的距离(△r),当炉芯功率一定时,即内热源的强度一定时,距离炉芯越远的反应料,温度越低,可能无法达到反应所需温度。距离真空熔炼炉炉芯越近,温度越高,越利于反应进行。   另外,真空熔炼炉料的散热性能越好,内部热量向外流失越快,热量很轻易就损耗在反应料之外,使一定点的温度降低。但是,如果反应料的散热性能不好,则利于热量的汇聚,使得热量向外传递时间加长,有利于反应料对热量的吸收和反应地进行,提高一定点的温度。应都在高真空条件下(4~13Pa)进行,反应温度1200℃左右,芯温度很快就能达到所需值,因此反应时间的长短取决于反应料的厚度,即炉芯外围反应料到炉体保温层的距离。可以通过设计炉体尺寸控制供电时间。